Titrimetry based on complexation

Questions

What is the main principle of titrimetry?

What is the analytical signal in titrimetry?

Formation of complexes

 $Ag^+ + 2CN^- \leftrightarrow [Ag(CN)_2]^-$

Formation constants

$$Ag^{+} + CN^{-} \leftrightarrow [AgCN] \qquad \beta_{1} = \frac{[AgCN]}{[Ag^{+}][CN^{-}]}$$

$$Ag(CN) + CN^{-} \leftrightarrow [Ag(CN)_{2}]^{-} \qquad \beta_{2} = \frac{[Ag(CN)_{2}^{-}]}{[Ag^{+}][CN^{-}]}$$

$$\beta = \beta_{1} \cdot \beta_{2} \qquad \beta = \frac{[Ag(CN)_{2}^{-}]}{[Ag^{+}][CN^{-}]}$$

Ethylenediaminetetraacetic acid

EDTA forms 1:1 complexes with most metals

EDTA + Mn²⁺

Formation constants

Ion	$\log K_{\rm f}$	Ion	$\log K_{\rm f}$	Ion	$\log K_{\rm f}$
Li ⁺	2.95	V ³⁺	25.9 ^a	Tl ³⁺	35.3
Na ⁺	1.86	Cr ³⁺	23.4^{a}	Bi ³⁺	27.8 ^a
K ⁺	0.8	Mn ³⁺	25.2	Ce ³⁺	15.93
Be ²⁺	9.7	Fe ³⁺	25.1	Pr ³⁺	16.30
Mg ²⁺	8.79	Co ³⁺	41.4	Nd ³⁺	16.51
Ca ²⁺	10.65	Zr^{4+}	29.3	Pm ³⁺	16.9
Sr ²⁺	8.72	Hf ⁴⁺	29.5	Sm ³⁺	17.06
Ba ²⁺	7.88	VO ²⁺	18.7	Eu ³⁺	17.25
Ra ²⁺	7.4	VO_2^+	15.5	Gd ³⁺	17.35
Sc ³⁺	23.1 ^a	Ag ⁺	7.20	Tb ³⁺	17.87
Y ³⁺	18.08	TI ⁺	6.41	Dy ³⁺	18.30
La ³⁺	15.36	Pd ²⁺	25.6 ^a	Ho ³⁺	18.56
V ²⁺	12.7^{a}	Zn^{2+}	16.5	Er ³⁺	18.89
Cr^{2+}	13.6 ^a	Cd ²⁺	16.5	Tm ³⁺	19.32
Mn ²⁺	13.89	Hg ²⁺	21.5	Yb ³⁺	19.49
Fe ²⁺	14.30	Sn ²⁺	18.3 ^b	Lu ³⁺	19.74
Co ²⁺	16.45	Pb ²⁺	18.0	Th ⁴⁺	23.2
Ni ²⁺	18.4	Al ³⁺	16.4	U ⁴⁺	25.7
Cu ²⁺	18.78	Ga ³⁺	21.7		
Ti ³⁺	21.3	In ³⁺	24.9		

Titration curve

Before titration

 $[M] = C_0$

 $pM = - \lg C_0$

Before the equivalence point

Excess of metal ion is present

$$[M] = \frac{moles \, of \, untit rated \, M}{total \, volume} = \frac{C_0 \times V_0 - C_T \times V_T}{V_0 + V_T}$$

At the equivalence point

$$K' = \frac{[MY]}{[M] [EDTA]} = \frac{[MY]}{[M]^2}$$
$$[MY] = \frac{C_0 \times V_0}{V_0 + V_t}$$
$$[M] = \sqrt{\frac{[MY]}{K'}}$$

After equivalence point

Excess of EDTA in the solution

$$\begin{bmatrix} M \end{bmatrix} = \frac{\begin{bmatrix} MY \end{bmatrix}}{K' \times \begin{bmatrix} EDTA \end{bmatrix}}$$
$$\begin{bmatrix} MY \end{bmatrix} = \frac{C_0 \times V_0}{V_0 + V_t}$$
$$\begin{bmatrix} EDTA \end{bmatrix} = \frac{n \text{ moles of excess EDTA}}{total \text{ volume}} = \frac{C_t \times V_t - C_0 \times V_0}{V_0 + V_t}$$

Indicators

Name	Structure	pKa	Color of free indicator	Color of metal ion complex
Calmagite	$OH HO O-N=N-O-SO_3^- CH_3 (H_2In^-) OH HO CH_3 (H_2In^-) OH HO OH HO$	$pK_2 = 8.1$ $pK_3 = 12.4$	H_2In^- red HIn^{2-} blue In^{3-} orange	Wine red
Eriochrome black T	$-O_3S - OH $	$pK_2 = 6.3$ $pK_3 = 11.6$	H_2In^- red HIn^{2-} blue In^{3-} orange	Wine red
Murexide	$O \xrightarrow{HN} O \xrightarrow{O} O \xrightarrow{NH} O \xrightarrow{NH} O \xrightarrow{O} O \xrightarrow{NH} O \xrightarrow{NH} O \xrightarrow{O} O \xrightarrow{O} O \xrightarrow{NH} O \xrightarrow{HN} O \xrightarrow{O} O \xrightarrow{HN} O \xrightarrow{HN} O \xrightarrow{O} O \xrightarrow{O} O \xrightarrow{O} O \xrightarrow{HN} O \xrightarrow{O} O O \xrightarrow{O} O \longrightarrow{O} O \longrightarrow{O} O \to O O O O \bigcirc O O O O O O O O O O O O O$	$pK_2 = 9.2$ $pK_3 = 10.9$	H_4In^- red-violet H_3In^{2-} violet H_2In^{3-} blue	Yellow (with Co ²⁺ , Ni ²⁺ , Cu ²⁺); red with Ca ²⁺
Xylenol orange	$\begin{array}{c} O_2C \\ O_2C \\ O_2C \\ HN^+ \\ O_2C \\ H_3ln^{3-} \end{array} \xrightarrow{CH_3 \\ H_3ln^{3-}} OH \\ OC \\$	$pK_2 = 2.32$ $pK_3 = 2.85$ $pK_4 = 6.70$ $pK_5 = 10.47$ $pK_6 = 12.23$	$\begin{array}{lll} H_5 In^{-} & yellow \\ H_4 In^{2-} & yellow \\ H_3 In^{3-} & yellow \\ H_2 In^{4-} & violet \\ HIn^{5-} & violet \\ In^{6-} & violet \end{array}$	Red
Pyrocatechol violet		$pK_1 = 0.2$ $pK_2 = 7.8$ $pK_3 = 9.8$ $pK_4 = 11.7$	H ₄ In red H ₃ In ⁻ yellow H ₂ In ²⁻ violet HIn ³⁻ red-purple	Blue

Precipitation titrimetry

 $nA^+ + mB^- \leftrightarrow A_n B_m \downarrow$

$$K_{sp}(A_n B_m) = [A^+]^n \cdot [B^-]^m = const$$

Precipitate should have low K_{sp}

Types

Argentometric (by AgNO₃): Ag⁺ + An⁻ \leftrightarrow AgAn \downarrow

Thiocyanite (by NH_4CNS): Ag⁺ + CNS⁻ \rightarrow AgCNS \downarrow

Mercurometric (by Hg2(NO₃)₂): 2Cl⁻ + Hg₂ \rightarrow Hg₂Cl₂ \downarrow

Before titration

 $[A] = C_0$ $pA = - \lg C_0$

Before equivalence point

$$[A] = \frac{mole \ of \ untit rated \ A}{total \ volume} = \frac{C_0 \times V_0 - C_T \times V_T}{V_0 + V_t}$$

$$[A] = \frac{C_0(V_0 - V_T)}{V_0 + V_t}$$

At the equivalence point

$$[A] = [B] = \sqrt{K_{s(AB)}^{\circ}}$$

After equivalence point

Excess of titrant

$$[A] = \frac{K_{s(AB)}^{\circ}}{[B]} \quad \mu \quad pA = pK_{s(AB)}^{\circ} - pB$$
$$[B] = \frac{moles \ of \ excess \ B}{total \ volume} = \frac{C_0 \times V_0 - C_T \times V_t}{V_0 + V_t}$$

if
$$C_0 = C_t$$
:
[B] = $\frac{C_0(V_0 - V_t)}{V_0 + V_t}$